Projects and outcomes


  • TN02000044 – Biorefining and circular economy for sustainability (2023–2028)
  • TP01010066 – "OPTOZON“ – Optimized ozone generator (2022)
  • TH03030432 – "TRIOX" – Advanced oxidation technology using ozone generator and membrane contactor (2018–2020)
  • OPVVV CZ.02.1.01/0.0/0.0/15_003/0000481 – "CRREAT" – Research center of cosmic rays and radiation events in the Atmosphere (2016–2023)
  • TH01030475 – Complex hydrogen technology for contaminant removal from the subsurface (2015–2018)


  • RPAPS 2023 – Innovation of laboratory materials - modernization of laboratory equipment
  • SGS23/070/OHK5/1T/13 – Comparative study of ionizing radiation emitted by atmospheric and laboratory discharges
  • SGS22/060/OHK5/1T/13 – Study of the effects of atmospheric phenomena caused by lightning discharge for aircraft dosimetry in laboratory conditions (2022)
  • SGS21/061/OHK5/1T/13 – Volatile properties of electrode patterns of ozone generators (2021)
  • RPAPS 2021 – Improvement of the Laboratory of Environmental Electrotechnics and Economics at K 13116 FEL of the Czech Technical University in Prague and innovation of laboratory facilities for teaching the subjects Environmental Engineering, Lightning protection economy and Ecology and economy (2021)
  • SGS20/066/OHK5/1T/13 – Low-cost elimination of iron from water by integrated system combining ozone generator with membrane contactor (2020)
  • SGS19/067/OHK5/1T/13 – Advanced methods of decomposition of materials by electro-hydromechanical effect (2019)
  • SGS18/076/OHK5/1T/13 – Complementary materials for optimalization of ozone production (2018)
  • SGS16/155/OHK5/2T/13 – Economic and technical optimization of ozone production yield for environmental applications (2016–2017)
  • SGS15/151/OHK5/2T/13 – Economic reliability of buildings affected by lightning discharge (2015–2016)

Selected realizations

1. Ozone generators with optimized working gas flow

2. Automated measuring station for diagnosing the remediation efficiency of an area affected by polychlorinated hydrocarbons

3. Water level height measurement sensor with wireless transmission

4. Ozone generator based on dielectric discharges applying polymer membranes

5. Measurement of radiation phenomena near electrical discharges using passive thermoluminescence detectors, bubble detectors and active scintillators

6. Wireless detector of lightning current in the conductor

Selected publications

  • MIKEŠ, J., S. PEKÁREK, and P. DZIK. Catalytic and time stability effects of photocatalysts on ozone production of a surface dielectric barrier discharge in air, Catalysis Communications. 2023, Volume 174. ISSN 1566-7367, DOI 10.1016/j.catcom.2022.106576.
  • MIKEŠ, J., I. SOUKUP, and S. PEKÁREK. A 3D Numerical Study of the Surface Dielectric Barrier Discharge Initial Phase. Mathematics. 2023, 11(4), 1-17. ISSN 2227-7390. DOI
  • MIKEŠ, J., S. PEKÁREK, and O. HANUŠ. Surface Dielectric Barrier Discharge in a Cylindrical Configuration - Effect of Airflow Orientation to the Microdischarges. Ozone Science and Engineering. 2023, 45(1), 2-18. ISSN 0191-9512. DOI 10.1080/01919512.2021.2016369.
  • HANUŠ, O. a R. ŠMÍD. Non-intrusive Current-based Fault Detection of Electro-mechanical Actuators with Brushed DC Motors. Metrology and Measurement Systems. 2022, 29(3), 505-523. ISSN 0860-8229. DOI 10.24425/mms.2022.140040.
  • ŠTĚPÁNOVÁ, D., J. MIKEŠ, V. ŠTĚPÁN, M. KRBAL, and O. PLOC. Vertical Dosimetric Measurement Of Electric Discharge Induced At Lightning Impulse Voltage Generator. Radiation Protection Dosimetry. 2022, 198(9-11), 617-622. ISSN 0144-8420. DOI 10.1093/rpd/ncac107.
  • PEKÁREK, S., et al. Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration. PLASMA CHEMISTRY AND PLASMA PROCESSING. 2021, 41(3), 779-792. ISSN 0272-4324. DOI 10.1007/s11090-021-10154-x.
  • MIKEŠ, J., et al. 3D printing materials for generators of active particles based on electrical discharges. Plasma Processes and Polymers. 2020, 17(1), 1-14. ISSN 1612-8850. DOI 10.1002/ppap.201900150.
  • KYSELOVÁ, D., et al. Measurements of radiation induced by a spark discharge under laboratory conditions. Radiation Measurements. 2020, 137 1-5. ISSN 1350-4487. DOI 10.1016/j.radmeas.2020.106420.
  • PURIČER, P., P. KOVÁŘ, and J. MIKEŠ. New Accuracy Testing of the Lightning VHF Interferometer by an Artificial Intercloud Pulse Generator. IEEE Transactions on Electromagnetic Compatibility. 2020, 62(5), 2128-2136. ISSN 0018-9375. DOI 10.1109/TEMC.2019.2947706.
  • PEKÁREK, S. and J. MIKEŠ. Driving voltage frequency and active electrode setup effects on ozone and UV generation of dielectric barrier discharge in air. The European Physical Journal D. 2020, 74(3), 1-9. ISSN 1434-6060. DOI 10.1140/epjd/e2020-100332-3.
  • PEKÁREK, S., et al. Effect of a diamond layer on the active electrode on the ozone generation of the dielectric barrier discharge in air. Journal of Physics D: Applied Physics. 2020, 53(27), 0-10. ISSN 0022-3727. DOI 10.1088/1361-6463/ab831f.
  • MIKEŠ, J., S. PEKÁREK, and I. SOUKUP. Experimental and modelling study of the effect of airflow orientation with respect to strip electrode on ozone production of surface dielectric barrier discharge. Journal of Applied Physics. 2016, 120(17), ISSN 0021-8979. DOI 10.1063/1.4966603.
  • PEKÁREK, S., et al. Effect of TiO2 on Various Regions of Active Electrode on Surface Dielectric Barrier Discharge in Air. PLASMA CHEMISTRY AND PLASMA PROCESSING. 2016, 36(5), 1187-1200. ISSN 0272-4324. DOI 10.1007/s11090-016-9723-4.
  • PEKÁREK, S., J. MIKEŠ, and J. KRÝSA. Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Applied Catalysis A: General. 2015, 502 122-128. ISSN 0926-860X. DOI 10.1016/j.apcata.2015.06.003.
  • PEKÁREK, S. and J. MIKEŠ. Temperature-and airflow-related effects of ozone production by surface dielectric barrier discharge in air. The European Physical Journal D. 2014, 68(10), 1-8. ISSN 1434-6060. DOI 10.1140/epjd/e2014-50393-x.
  • MIKEŠ, J. and D. KOKEŠ. Arrangements of transformer winding with a view to impulse stress. Journal of Electrostatics. 2013, 71(3), 533-539. ISSN 0304-3886. DOI 10.1016/j.elstat.2012.12.015.
  • MIKEŠ, J. and M. EFMERTOVÁ. Development of lightning rod for lightning protection standard in Europe, especially in Czech lands. Journal of Electrostatics. 2013, 71(3), 597-601. ISSN 0304-3886. DOI 10.1016/j.elstat.2012.12.016.

Selected conferences

  • HANUŠ, O., J. MIKEŠ, and J. KÁKONA. Autonomous Groundwater Monitoring Station with Wireless Communication. In: SALCEANU, A., Q. HE, and C. LAZARESCU, eds. 23rd IMEKO TC4 Symposium Electrical & Electronic Measurement. 23rd IMEKO TC4 Symposium, Xi-an, 2019-09-17/2019-09-20. Budapest: IMEKO TC4 Technical Committee on Measurement of Electrical Quantities, 2019. p. 63-67. 23. ISBN 978-606-13-5238-8.
  • MIKEŠ, J. and P. KOVÁŘ. CALIBRATION OF THE VHF LIGHTNING INTERFEROMETER TRIGGERING UNIT USING A LIGHTNING CURRENT GENERATOR. In: International Conference on Lightning & Static Electricity 2019 (ICOLSE 2019). Wichita (Kansas), 2019-09-10/2019-09-13. Wichita, Kansas: Wichita State University, National Institute for Aviation Research, 2019.
  • MIKEŠ, J., O. HANUŠ, and J. KÁKONA. Piezoelectric Lightning Current Detection. In: 4th International Lightning Protection Symposium. Shenzen, 2018-10-24/2018-10-27. Paříž: International Lightning Protection Association, 2018. p. 152-155. 1. vol. 1.
  • PURIČER, P., et al. Telemetry System of FIK III. Stratospheric Balloon. In: FLIEGEL, K. and S. VÍTEK, eds. 2018 28th International Conference Radioelektronika. 28th International Conference Radioelektronika 2018, Praha, 2018-04-19/2018-04-20. IEEE (Institute of Electrical and Electronics Engineers), 2018. p. 1-4. ISBN 978-1-5386-2485-2. DOI 10.1109/RADIOELEK.2018.8376394
  • PURIČER, P., et al. Telemetry system for research stratospheric balloon. In: 22nd 2017 International Conference on Applied Electronics. 22nd International Conference Applied Electronics 2017, Pilsen, 2017- 09-05/2017-09-06. Pilsen: University of West Bohemia, 2017. p. 171-174. ISSN 1803-7232. ISBN 978-80- 261-0641-8. DOI 10.23919/AE.2017.8053608
  • MIKEŠ, J., O. HANUŠ, and J. KÁKONA. Methodology for Monitoring Lightning Stroke of an Object by Means of a Smart Sensoric. In: Proceedings of the International Conference on Lightning & Static Electricity (ICOLSE 2017). International Conference on Lightning & Static Electricity 2017, Winc Aichi, Nagoya, Aichi, 2017-09- 13/2017-09-15. Tokyo: The Institute of Electrical Engineers of Japan, 2017.
  • MIKEŠ, J., et al. DISTURBANCE CAUSED BY PENETRATION SURGE IN INTERIOR INSTALLATIONS OF BUILDINGS. In: Proceedings of the International Conference on Lightning & Static Electricity (ICOLSE 2015). International Conference on Lightning & Static Electricity, Toulouse, 2015-09-09/2015-09-11. 2015. DOI 10.1049/ic.2015.0194
  • MIKEŠ, J., et al. Influence of the wall material of the lightning protected object size induced surges. In: Proceedings of the 32nd International Conference on Lightning Protection – ICLP 2014. 32nd International Conference on Lightning Protection, Shanghai, 2014-10-13/2014-10-17. Piscataway: IEEE, 2014. p. 1859-1865. ISBN 978-1-4799-3544-4. DOI 10.1109/ICLP.2014.6973432




The University of the Witwatersrand, School of Electrical and Information Engineering, Johannesburg, South Africa, Lightning Research Laboratory (JLRL) a Center of Excellence on High Voltage Engineering from 1. 10. to 24. 10. 2022. Teaching in the HV laboratory and analysis and detection of lightning discharges.

Oklahoma State University, College of Arts and Sciences, Department of Physics, Stillwater, Oklahoma, United States of America from 11. 8. 2022 to 10. 9. 2022. Study of ionization phenomena in the environment of lightning (electrical) discharges. Cooperation with prof. E. Benton.

4th Science Advisory Meeting and CRREAT Workshop – 17th December 2019.

Meeting with representatives of the National Center for Marine Equipment Quality Supervision and Inspection, Xuyun Zang, Ph.D. and Qingdao City Mayor Meng Fanli, Ph.D. in 2018.

Study of lightning discharge interactions at A. Alikhanyan National Laboratory (Yerevan Physics Institute), Nor Amberd Station (2000 m above sea level) and Arragats Space Environmental Center (3200 m above sea level) from 10.9. to 11. 10. 2018.

Calibration of detectors in the CERN laboratory – June 2018


Laboratory of Environmental Electrotechnics and Economics 

FEE CTU in Prague
  • LEEE is the part of  
  • Faculty of Electrical Engineering (FEE) of the Czech Technical University in Prague (CTU)

Landing Page Builder